London, October 20 (ANI): In a new study, researchers are
investigating nerve cells in the brain that function in establishing
one's location and direction.
Dartmouth neurobiologist Jeffrey
Taube is using microelectrodes to record the activity of cells in a
rat's brain that make possible spatial navigation -how the rat gets from
one place to another - from "here" to "there."
But before embarking to go "there," you must first define "here."
"Knowing
what direction you are facing, where you are, and how to navigate are
really fundamental to your survival," Taube said.
"For any animal
that is preyed upon, you'd better know where your hole in the ground is
and how you are going to get there quickly. And you also need to know
direction and location to find food resources, water resources, and the
like," he said,
Not only is this information fundamental to your
survival, but knowing your spatial orientation at a given moment is
important in other ways, as well.
Taube points out that it is a sense or skill that you tend to take for granted, which you subconsciously keep track of.
"It
only comes to your attention when something goes wrong, like when you
look for your car at the end of the day and you can't find it in the
parking lot," Taube said.
Perhaps this is a momentary lapse, a
minor navigational error, but it might also be the result of brain
damage due to trauma or a stroke, or it might even be attributable to
the onset of a disease such as Alzheimer's.
Understanding the
process of spatial navigation and knowing its relevant areas in the
brain may be crucial to dealing with such situations.
One critical component involved in this process is the set of neurons called "head direction cells."
These
cells act like a compass based on the direction your head is facing.
They are located in the thalamus, a structure that sits on top of the
brainstem, near the centre of the brain.
He is also studying
neurons he calls "place cells." These cells work to establish your
location relative to some landmarks or cues in the environment.
The
place cells are found in the hippocampus, part of the brain's temporal
lobe. They fire based not on the direction you are facing, but on where
you are located.
Studies were conducted using implanted
microelectrodes that enabled the monitoring of electrical activity as
these different cell types fired.
Taube explains that the two populations - the head direction cells and the place cells - talk to one another.
"They put that information together to give you an overall sense of 'here,' location wise and direction wise," he said.
"That
is the first ingredient for being able to ask the question, 'How am I
going to get to point B if I am at point A?' It is the starting point on
the cognitive map," Taube said.
Taube and Stephane Valerio, his
postdoctoral associate for the last four years, have just published a
paper in the journal Nature Neuroscience, highlighting the head
direction cells.
The studies described in Nature Neuroscience
discuss the responses of the spatial navigation system when an animal
makes an error and arrives at a destination other than the one targeted -
its home refuge, in this case.
The authors describe two
error-correction processes that may be called into play - resetting and
remapping - differentiating them based on the size of error the animal
makes when performing the task.
When the animal makes a small
error and misses the target by a little, the cells will reset to their
original setting, fixing on landmarks it can identify in its landscape.
"We concluded that this was an active behavioural correction process, an adjustment in performance," Taube said.
"However,
if the animal becomes disoriented and makes a large error in its quest
for home, it will construct an entirely new cognitive map with a
permanent shift in the directional firing pattern of the head direction
cells," he said.
This is the "remapping."
No comments:
Post a Comment